39 research outputs found

    A Practical Approach: Design and Implementation of a Healthcare Software for Screening of Dysphonic Patients

    Get PDF
    Risk management in the development of medical software and devices is one of the most crucial processes in ensuring accurate diagnoses and treatment of disease. The consequences of wrong decisions that happen in our daily life might be unembellished. However, wrong decisions in healthcare based on unreliable evidence due to erroneous software could result in loss of life. Dysphonic patients suffering from various vocal fold disorders might have a threat of life due to inaccurate diagnosis. Some voice disorders, such as keratosis, are precancerous, and can become cancerous in cases that involve inaccurate diagnosis due to software failure. The objective of this paper is to design and implement a healthcare software for the detection of voice disorders in nonperiodic speech signals. Occurrences of potential risks during the design and development of the proposed software are taken into account to avoid failure. The software is implemented by applying the local binary pattern (LBP) operator on the textures of nonperiodic signals. The textures are obtained through the recurrence plot. The LBP operator computes the histograms for normal persons and dysphonic patients, and these histograms are used with the support vector machine for the automatic classification of dysphonic patients. The software is evaluated and tested by using the Massachusetts Eye and Ear Infirmary voice disorder database. The success rate of the proposed healthcare system is 97.73% ± 1.2, and the area under the receiver operating characteristic curve is 0.98 ± 0. The performance of the proposed healthcare system is much better than the existing commercial software used for screening dysphonic patients

    An Automatic Digital Audio Authentication/Forensics System

    Get PDF
    With the continuous rise in ingenious forgery, a wide range of digital audio authentication applications are emerging as a preventive and detective control in real-world circumstances, such as forged evidence, breach of copyright protection, and unauthorized data access. To investigate and verify, this paper presents a novel automatic authentication system that differentiates between the forged and original audio. The design philosophy of the proposed system is primarily based on three psychoacoustic principles of hearing, which are implemented to simulate the human sound perception system. Moreover, the proposed system is able to classify between the audio of different environments recorded with the same microphone. To authenticate the audio and environment classification, the computed features based on the psychoacoustic principles of hearing are dangled to the Gaussian mixture model to make automatic decisions. It is worth mentioning that the proposed system authenticates an unknown speaker irrespective of the audio content i.e., independent of narrator and text. To evaluate the performance of the proposed system, audios in multi-environments are forged in such a way that a human cannot recognize them. Subjective evaluation by three human evaluators is performed to verify the quality of the generated forged audio. The proposed system provides a classification accuracy of 99.2% ± 2.6. Furthermore, the obtained accuracy for the other scenarios, such as text-dependent and text-independent audio authentication, is 100% by using the proposed system

    Implementation of Fuzzy Decision Based Mobile Robot Navigation Using Stereo Vision

    Get PDF
    AbstractIn this article, we discuss implementation phases for an autonomous navigation of a mobile robotic system using SLAM data, while relying on the features of learned navigation maps. The adopted SLAM based learned maps, was relying entirely on an active stereo vision for observing features of the navigation environment. We show the framework for the adopted lower-level software coding, that was necessary once a vision is used for multiple purposes, distance measurements, and obstacle discovery. In addition, the article describes the adopted upper-level of system intelligence using fuzzy based decision system. The proposed map based fuzzy autonomous navigation was trained from data patterns gathered during numerous navigation tasks. Autonomous navigation was further validated and verified on a mobile robot platform

    Investigation of Voice Pathology Detection and Classification on Different Frequency Regions Using Correlation Functions.

    Get PDF
    Automatic voice pathology detection and classification systems effectively contribute to the assessment of voice disorders, which helps clinicians to detect the existence of any voice pathologies and the type of pathology from which patients suffer in the early stages. This work concentrates on developing an accurate and robust feature extraction for detecting and classifying voice pathologies by investigating different frequency bands using correlation functions. In this paper, we extracted maximum peak values and their corresponding lag values from each frame of a voiced signal by using correlation functions as features to detect and classify pathological samples. These features are investigated in different frequency bands to see the contribution of each band on the detection and classification processes.Various samples of sustained vowel /a/ of normal and pathological voices were extracted from three different databases: English, German, and Arabic. A support vector machine was used as a classifier. We also performed a t test to investigate the significant differences in mean of normal and pathological samples.The best achieved accuracies in both detection and classification were varied depending on the band, the correlation function, and the database. The most contributive bands in both detection and classification were between 1000 and 8000 Hz. In detection, the highest acquired accuracies when using cross-correlation were 99.809%, 90.979%, and 91.168% in the Massachusetts Eye and Ear Infirmary, Saarbruecken Voice Database, and Arabic Voice Pathology Database databases, respectively. However, in classification, the highest acquired accuracies when using cross-correlation were 99.255%, 98.941%, and 95.188% in the three databases, respectively

    Chaos-based robust method of zero-watermarking for medical signals

    Get PDF
    The growing use of wireless health data transmission via Internet of Things is significantly beneficial to the healthcare industry for optimal usage of health-related facilities. However, at the same time, the use raises concern of privacy protection. Health-related data are private and should be suitably protected. Several pathologies, such as vocal fold disorders, indicate high risks of prevalence in individuals with voice-related occupations, such as teachers, singers, and lawyers. Approximately, one-third of the world population suffers from the voice-related problems during the life span and unauthorized access to their data can create unavoidable circumstances in their personal and professional lives. In this study, a zero-watermarking method is proposed and implemented to protect the identity of patients who suffer from vocal fold disorders. In the proposed method, an image for a patient's identity is generated and inserted into secret keys instead of a host medical signal. Consequently, imperceptibility is naturally achieved. The locations for the insertion of the watermark are determined by a computation of local binary patterns from the time–frequency spectrum. The spectrum is calculated for low frequencies such that it may not be affected by noise attacks. The experimental results suggest that the proposed method has good performance and robustness against noise, and it is reliable in the recovery of an individual's identity

    A zero-watermarking algorithm for privacy protection in biomedical signals

    Get PDF
    Confidentiality of health information is indispensable to protect privacy of an individual. However, recent advances in electronic healthcare systems allow transmission of sensitive information through the Internet, which is prone to various vulnerabilities, attacks and may leads to unauthorized disclosure. Such situations may not only create adverse effects for individuals but may also cause severe consequences such as hefty regulatory fines, bad publicity, legal fees, and forensics. To avoid such predicaments, a privacy protected healthcare system is proposed in this study that protects the identity of an individual as well as detects vocal fold disorders. The privacy of the developed healthcare system is based on the proposed zero-watermarking algorithm, which embeds a watermark in a secret key instead of the signals to avoid the distortion in an audio sample. The identity is protected by the generation of its secret shares through visual cryptography. The generated shares are embedded by finding the patterns into the audio with the application of one-dimensional local binary pattern. The proposed zero-watermarking algorithm is evaluated by using audio samples taken from the Massachusetts Eye and Ear Infirmary voice disorder database. Experimental results demonstrate that the proposed algorithm achieves imperceptibility and is reliable in its extraction of identity. In addition, the proposed algorithm does not affect the results of disorder detection and it is robust against noise attacks of various signal-to-noise ratios
    corecore